
1

Space Game

Software Requirements Specifications

Version 1.3

Johnathan Snyder, Craig Robinson, Brian Tillery

2/12/2014

2

Change History

Version Summary Author Date
0.1 Initial template created Brian Tillery 2/12/2014
1.0 Initial writeup Johnathan Snyder

Craig Robinson
Brian Tillery

2/22/2014

1.1 Split non-functional requirements into
two categories.

Craig Robinson
Brian Tillery

2/24/2014

1.2 Added diagrams to section 5 Johnathan Snyder 2/24/2014
1.3 Added diagram descriptions Johnathan Snyder 2/25/2014

Note: This table summarizes all changes made to this document.

3

Table of Contents

1. Introduction 4

 1.1 Motivation 4

 1.2 Scope 4

 1.3 Goal(s) 4

 1.4 Definitions 4

2. Overall Description 5

 2.1 User Interfaces 5

 2.2 Communication Interfaces 5

 2.3 Constraints 5

 2.4 Application Features 5

 2.5 Optional Functionality 5

 2.6 Assumptions and Dependencies 6

3. Functional Requirements 6

4. Non-Functional Requirements 7

 4.1 Developer Non-Functional Requirements 7

 4.2 User Non-Functional Requirements 7

5. Requirements Diagrams 8

 5.1 Use Case Diagrams 8

 5.2 User Activity Diagrams 9

 5.3 High Level Class Diagram 10

4

1. Introduction

This section discusses the purpose, scope, and goals of the game. Also

included are definitions that clarify any jargon used in this document.

1.1 Motivation

The successes of the many great free-to-play games on the current mobile

app market are an inspiration to put out a fresh new take on the classic

arcade-style spaceship games of yesterday mixed with the technological

capabilities of today.

1.2 Scope

Space Game has been designed for Google’s Android Platform, and is

intended purely as a form of entertainment for any participating user on

android based smart phones. All progress, high scores, and other data will be

stored locally in a database.

1.3 Goal(s)

The goal of Space Game is simple: to create a fun, free, and engaging

interactive mobile application that appeals to a general audience.

1.4 Definitions

Perks – Bonuses attainable in-game that can be purchased with Space Coins

to modify long-term gameplay to the user’s advantage.

Space Coins – Currency attainable in-game during the course of a flight that

can be used to purchase perks as well as increase the player’s score.

Powerups – Bonuses attainable in-game during the course of a flight that can

temporarily modify gameplay to the user’s advantage.

2D Scroller – A type of game whose artistic style typically consists of a two-

dimensional level where the character(s) may progress as the screen scrolls

to the next portion of the level.

Achievements – A set of sub-goals attainable in-game that may either yield

in-game rewards or may not affect gameplay whatsoever.

5

2. Overall Description

2.1 User Interfaces

User interfaces will be touch screen menus found in typical games. The main

menu will give the user the functionality to start the game, view the player’s

high score, view the player’s achievements, buy perks for the player’s ship,

and change the game’s settings. The in-game interface will allow the player to

dodge obstacles and pickup coins or any other form of reward.

2.2 Communication Interfaces

At the moment, the game will not need to communicate with any outside

source. This will obviously change if a social media sharing option is

implemented. The game will communicate with a database used for storing

information about settings, scores, and other data.

2.3 Constraints

 Currently there are no perceived constraints that will affect the game.

2.4 Application Features

The user will move the spaceship to avoid obstacles and pick up space coins.

Collision detection will be implemented to detect whether the player’s

spaceship touches an obstacle or space coin. Gameplay will continue

infinitely until an obstacle hits the spaceship. Space coins will be used to buy

perks. The player’s high score and coin balance will be saved locally.

2.5 Optional Functionality

In addition to the functionality described above, the following items could

also be implemented if time permits:

1. The ability to share your high score on a social media site. Sharing

high scores on social media would promote competition against

friends.

2. The ability to buy more space ships and change them before each

round. Customization adds replay value to games. The user will play

the game longer is there is an incentive to keep collecting space coins.

3. Implementation of a health system that would allow more perks and

customization. The health system would allow the user’s spaceship to

sustain more damage. Also, the user could buy shields, repair kits, etc.

to further his/her survival.

6

2.6 Assumptions and Dependencies

The minimum SDK version supported is Android 2.3 (Gingerbread), the

maximum SDK version supported is SDK 4.4(KitKat), and the target SDK is

4.3 (Jelly Bean).

3. Functional Requirements

This section contains the functional requirements for the game. The

requirements are arranged by level of priority.

Name Description Priority

Capturing touch events

Touch events will need to be captured

so that the user can navigate menus

and also control the space ship.

High Priority

Collision Detection

The game will need to handle the

collisions that take place between the

spaceship and the obstacles.

High Priority

Storage

The game will need to store

information such as the user’s high

score, achievements unlocked, coins

available, and perks bought.

High Priority

In-game Pausing

The ability to pause live games is

needed in the case of the user

receiving a phone call, or in the event

the user needs to accomplish some

other task.

Med. Priority

Game Settings

The user will be able to modify game

settings such as sound, vibration, or

reset game progress.

Low Priority

7

4. Non-Functional Requirements

 This section contains the non-functional requirements for the game.

4.1 Developer Non-Functional Requirements

Name Description Priority

Git Repository
Application files will be stored in a Git

repository to track versioning.
High Priority

AndEngine
This game engine will aid in the

production of the game.
High Priority

Box2D
This extension of AndEngine handles

object collisions and physics.
Med. Priority

4.2 User Non-Functional Requirements

Name Description Priority

Precise collision detection

Collision calculations should be

accurate so errors in collision detection

do not occur. Errors in collision

detection hurt gameplay experience.

High Priority

Responsive swiping

The capturing and handling of touch

events needs have little to no latency. A

high degree of latency will cause users

to stop playing the game.

High Priority

Ease of Use

Everything in application is accessible

from the main menu by no more than

two button touches.

Med. Priority

8

5. Requirements Diagrams

This section contains the use case diagrams, user activity diagrams, and high

level class diagrams associated with the game.

5.1 Use Case Diagrams

The use case diagram when the player is at the main menu.

The use case diagram when the player is playing the game.

9

5.2 User Activity Diagrams

The activity diagram for when the player is playing the game. When the player is in the

game, the player can either die or pause the game. If the player pauses the game, the player

can then resume the game or start a new game. If the player dies, an end game menu pops
up with the options to start a new game or go back to the main menu.

10

The activity diagram for the perk system. When the player enters the main menu, the

player has the option to buy perks. In order to buy perks, the user has to accumulate coins

during game play.

5.3 High Level Class Diagram

The high level diagram for the whole system. This diagram only includes classes

that we think we might need. We might have to add or remove some of the classes

when we get to the design phase.

